DSP options to accelerate your DSP+FPGA design
Suhel Dhanani, Altera Corporation
EETimes (10/14/2010 2:56 PM EDT)
Although signal processing is usually associated with digital signal processors, it is becoming increasingly evident that FPGAs are taking over as the platform of choice in the implementation of high-performance, high-precision signal processing.
For many such applications, the choice generally boils down to using either a single FPGA, a FPGA with an associated DSP processor or a farm of DSP processors.
While it is generally understood that DSP processors can be programmed in C – leading to a much simpler development flow – this advantage is quickly dissipated when the design has to be partitioned across either multiple DSP processors or between a DSP processor and a FPGA. The truth is that a single DSP processor lacks the performance to do the signal processing required by most infrastructure systems.
This then requires system designers to make a choice between using multiple DSP processors or a FPGA. The latter choice almost always results in the lowest system cost/power implementation.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
- Multi-core capable 64-bit RISC-V CPU with vector extensions
Related White Papers
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
- Introduction to the Philips’ LPC 2100 ARM 7-based microcontroller – the first standard microcontroller to integrate ARM-7 – and the first to use Philips’ new Memory Acceleration Module
- Using PLDs for Algorithm Acceleration - Faster, Better, Cheaper
- C-Language techniques for FPGA acceleration of embedded software
Latest White Papers
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs