C-Language techniques for FPGA acceleration of embedded software
By David Pellerin (ImpulseC) and Kunal Shenoy (Xilinx)
Mar 31 2006 (14:19 PM), Courtesy of Programmable Logic DesignLine
Developers of embedded and high-performance systems are taking increased advantage of FPGAs for hardware-accelerated computing. FPGA computing platforms effectively bridge the gap between software programmable systems based on traditional microprocessors and systems based on custom hardware functions. Advances in design tools have made it easier to create hardware-accelerated applications directly from C language representations, but it is important to understand how to use these tools to the best advantage, and how decisions made during the design and programming of mixed hardware/software systems will impact overall performance.
This paper presents a brief overview of modern FPGA-based platforms and related software-to-hardware tools, then moves quickly into a set of examples showing how computationally-intensive algorithms can be written, analyzed and optimized for increased performance.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Software Infrastructure of an embedded Video Processor Core for Multimedia Solutions
- An Industrial Overview of Open Standards for Embedded Vision and Inferencing
- Optimizing embedded software for real-time multimedia processing
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS