Choosing a Processor for Machine Learning at the Edge
By Manisha Agrawal, Texas Instruments
EETimes (June 23, 2019)
Not all machine learning models need processing on the order of several TOPS. Understanding the performance, latency and accuracy need of your application is a critical first step to choose a processor for machine learning at the edge.
Machine learning has become popular for solving machine vision and other embedded computing problems. While classical machine learning algorithms need human intervention to extract features from data, machine learning algorithms or network models learn how to extract important features in data and make intelligent predictions about that data.
Below, figure 1 shows a few examples where machine learning technology is adding intelligence to a variety of devices. In smart home appliances like a smart oven, machine learning can be used to classify food inside the oven and set the cooking temperature and time of the oven accordingly. In factories, machine learning can be used for detecting defects in the products or it can be used for predictive maintenance to help predict the remaining useful life of the motor or detecting anomaly in motor operations. In a vehicle, it can be used to detect cars, pedestrians, traffic signs, etc. on the road. It can also be used in devices doing natural language translation.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- How Efinix is Conquering the Hurdle of Hardware Acceleration for Devices at the Edge
- At the edge of data processing
- PUF is a Hardware Solution for the Sunburst Hack
- Enabling AI Vision at the Edge
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience