Characterizing licensable core performance; Find out why comparing processor cores is tricky and learn what to look for.

[Editor's note: If you are unfamiliar with the concepts of chip fabrication, the article "Push performance and power beyond the data sheet" provides some useful background.]
Comparing licensable processor cores and quantifying their relative performance is challenging. Unlike processor chips, there are many different ways in which licensable cores can be configured, implemented, and fabricated, each of which yields a different combination of speed, area, and power consumption. Particularly for digital signal processing applications (which tend to push the limits on one or more of these metrics) it's essential to have reliable and accurate performance data.
To make apples-to-apples comparisons between cores you'll need to pin down a consistent set of assumptions. In this article, we'll discuss some of the factors to consider when assessing and comparing licensable cores for digital signal processing.
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
- Why Interlaken is a great choice for architecting chip to chip communications in AI chips
- Top 5 Reasons why CPU is the Best Processor for AI Inference
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs