C-Language techniques for FPGA acceleration of embedded software
By David Pellerin (ImpulseC) and Kunal Shenoy (Xilinx)
Mar 31 2006 (14:19 PM), Courtesy of Programmable Logic DesignLine
Developers of embedded and high-performance systems are taking increased advantage of FPGAs for hardware-accelerated computing. FPGA computing platforms effectively bridge the gap between software programmable systems based on traditional microprocessors and systems based on custom hardware functions. Advances in design tools have made it easier to create hardware-accelerated applications directly from C language representations, but it is important to understand how to use these tools to the best advantage, and how decisions made during the design and programming of mixed hardware/software systems will impact overall performance.
This paper presents a brief overview of modern FPGA-based platforms and related software-to-hardware tools, then moves quickly into a set of examples showing how computationally-intensive algorithms can be written, analyzed and optimized for increased performance.
To read the full article, click here
Related Semiconductor IP
- UCIe Chiplet PHY & Controller
- MIPI D-PHY1.2 CSI/DSI TX and RX
- Low-Power ISP
- eMMC/SD/SDIO Combo IP
- DP/eDP
Related White Papers
- Software Infrastructure of an embedded Video Processor Core for Multimedia Solutions
- Hardware Acceleration for Embedded Computing
- Is Tomorrow's Embedded-Systems Programming Language Still C?
- Are you optimizing the benefits of cloud computing for faster reliability verification?
Latest White Papers
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- The pivotal role power management IP plays in chip design
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware