Applying DevOps to IoT solution development
Pandey Manoj, Babaria Urvashi & Soni Govind (eInfochips)
embedded.com (March 06, 2017)
There is no doubt in anyone’s mind today that enterprises across all verticals are viewing the growth of the Internet of Things (IoT) as a playground of endless opportunities with somewhat undefined rules – clearly a market that they don’t want to miss out on. A McKinsey & Company analysis estimates the total economic value of IoT technologies in the range of $4 trillion to $11.1 trillion a year by 2025.
In order to weather the big changes of IoT transformation in near future, IoT application developers and product companies must understand that faster time-to-market is very critical to success in the IoT marketplace. To achieve that, you must allow IoT development platforms to do most of the heavy lifting. This is currently a major focus for large IoT enterprises right now, and can indeed play a very key role in the development of scalable IoT applications and services, leading to faster time-to-market because of reduced costs and time of delivery. There is also reduced need for coding and testing.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- The IoT is turning software development upside down
- Designing an Efficient DSP Solution: Choosing the Right Processor and Software Development Toolchain
- Applying Continuous Integration to Hardware Design and Verification
- Power Management for Internet of Things (IoT) System on a Chip (SoC) Development
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience