ACE: Confidential Computing for Embedded RISC-V Systems
Confidential computing plays an important role in isolating sensitive applications from the vast amount of untrusted code commonly found in the modern cloud. We argue that it can also be leveraged to build safer and more secure mission-critical embedded systems. In this paper, we introduce the Assured Confidential Execution (ACE), an open-source and royalty-free confidential computing technology targeted for embedded RISC-V systems. We present a set of principles and a methodology that we used to build ACE and that might be applied for developing other embedded systems that require formal verification. An evaluation of our prototype on the first available RISC-V hardware supporting virtualization indicates that ACE is a viable candidate for our target systems.
To read the full article, click here
Related Semiconductor IP
- All-In-One RISC-V NPU
- Configurable RISC-V processor IP core
- MIPI I3C Master RISC-V based subsystem
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
Related White Papers
- Traceability for Embedded Systems
- Quality Assurance for Embedded Systems
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Android, Linux and Real-Time Development for Embedded Systems
Latest White Papers
- ACE: Confidential Computing for Embedded RISC-V Systems
- Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors
- CFET Beyond 3 nm: SRAM Reliability under Design-Time and Run-Time Variability
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications