IP for Renesas

Welcome to the ultimate IP for Renesas hub! Explore our vast directory of IP for Renesas
All offers in IP for Renesas
Filter
Filter

Login required.

Sign in

Login required.

Sign in

Compare 6 IP for Renesas from 3 vendors (1 - 6)
  • eFPGA Soft IP
    • These eFPGA IP cores offer designers the flexibility to tailor resources to their application requirements, available as either Soft RTL or Hard GDSII IP.
    • Our standard-cell-based approach facilitates rapid porting to new process geometries or variants, including industrial and rad-hard grade versions.
    Block Diagram -- eFPGA Soft IP
  • I2C Controller IP- Master / Slave, Parameterized FIFO, APB Bus
    • The Digital Blocks DB-I2C-MS-APB Controller IP Core interfaces a microprocessor via the AMBA APB Bus to an I2C Bus in Standard-Mode (100 Kbit/s) / Fast-Mode (400 Kbit/s) / Fast-Mode Plus (1 Mbit/s) / Hs-Mode (3.4+ Mb/s) / Ultra Fast-Mode (5 mbit/s).

      The I2C is a two-wire bidirectional interface standard (SCL is Clock, SDA is Data) for transfer of bytes of information between two or more compliant I2C devices, typically with a microprocessor behind the master controller and one or more slave devices.

      The DB-I2C-MS-APB is a Master/Slave I2C Controller that in Master Mode controls the Transmit or Receive of data to or from slave I2C devices while in Slave Mode allows an external I2C Master device to control the Transmit or Receive of data.

    Block Diagram -- I2C Controller IP- Master / Slave, Parameterized FIFO, APB Bus
  • I2C Controller IP- Master / Slave, Parameterized FIFO, AHB Bus
    • The DB-I2C-MS-AHB Controller IP Core interfaces a microprocessor via the AMBA AHB Bus to an I2C Bus in Standard-Mode (100 Kbit/s) / Fast-Mode (400 Kbit/s) / Fast-Mode Plus (1 Mbit/s) / Hs-Mode (3.4+ Mb/s) / Ultra Fast-Mode (5 mbit/s).

      The I2C is a two-wire bidirectional interface standard (SCL is Clock, SDA is Data) for transfer of bytes of information between two or more compliant I2C devices, typically with a microprocessor behind the master controller and one or more slave devices.

      The DB-I2C-MS-AHB is a Master / Slave I2C Controller that in Master Mode controls the Transmit or Receive of data to or from slave I2C devices while in Slave Mode allows an external I2C Master device to control the Transmit or Receive of data.

    Block Diagram -- I2C Controller IP- Master / Slave, Parameterized FIFO, AHB Bus
  • I2C Controller IP- Master / Slave, Parameterized FIFO, AXI Bus
    • The DB-I2C-MS-AXI Controller IP Core interfaces a microprocessor via the AMBA AXI Bus to an I2C Bus in Standard-Mode (100 Kbit/s) / Fast-Mode (400 Kbit/s) / Fast-Mode Plus (1 Mbit/s) / Hs-Mode (3.4+ Mb/s) / Ultra Fast-Mode (5 mbit/s).
    • The I2C is a two-wire bidirectional interface standard (SCL is Clock, SDA is Data) for transfer of bytes of information between two or more compliant I2C devices, typically with a microprocessor behind the master controller and one or more slave devices.
    • The DB-I2C-MS-AXI is a Master / Slave I2C Controller that in Master Mode controls the Transmit or Receive of data to or from slave I2C devices while in Slave Mode allows an external I2C Master device to control the Transmit or Receive of data.
    Block Diagram -- I2C Controller IP- Master / Slave, Parameterized FIFO, AXI Bus
  • I2C Controller IP – Master, Parameterized FIFO, AXI Bus
    • The DB-I2C-M-AXI Controller IP Core interfaces an ARM, MIPS, PowerPC, ARC or other high performance microprocessor via the AMBA 2.0 AXI System Interconnect Fabric to an I2C Bus. The I2C is a two-wire bidirectional interface standard (SCL is Clock, SDA is Data) for transfer of bytes of information between two or more compliant I2C devices, typically with a microprocessor behind the master controller and one or more slave devices.
    • The DB-I2C-M-AXI is a Master I2C Controller that controls the Transmit or Receive of data to or from slave I2C devices. Figure 1 depicts the system view of the DB-I2C-M AXI Controller IP Core embedded within an integrated circuit device.
    Block Diagram -- I2C Controller IP – Master, Parameterized FIFO, AXI Bus
  • PCIe 3.1 Controller with AXI
    • Compliant with the PCI Express 3.1/3.0, and PIPE (16- and 32-bit) specifications
    • Compliant with PCI-SIG Single-Root I/O Virtualization (SR-IOV) Specification
    • Supports Endpoint, Root-Port, Dual-mode configurations
    • Supports x16, x8, x4, x2, x1 at 8 GT/s, 5 GT/s, 2.5 GT/s speeds
    • Supports AER, ECRC, ECC, MSI, MSI-X, Multi-function, P2P, crosslink, and other optional features
    • Supports many ECNs including LTR, L1 PM substates, etc.
    Block Diagram -- PCIe 3.1 Controller with AXI
×
Semiconductor IP