Why 2023 Holds Big Promise for Multi-Die Systems
If it seems like everyone’s talking about multi-die systems, you’re not mistaken. The semiconductor industry isn’t only talking about them—multi-die systems are already in the market. With compute demands ballooning and Moore’s law waning, integrating multiple heterogeneous dies, or chiplets, into a system in the same package offers a way to meet aggressive power, performance, area (PPA), cost, and time-to-market requirements. Multi-die systems allow designers to accelerate scaling of system functionality at a cost-effective price, reduce risk, and rapidly create new product variants for flexible portfolio management.
But while the multi-die system train left the station a year or two ago, it has really only been chugging along. Until now. The coming year, 2023, looks to be an inflection point as multi-die systems start to make deeper inroads into the mainstream semiconductor world.
Why do we think 2023 is the year for the seismic shift to multi-die systems? The big change is that the broader ecosystem around these architectures is maturing, providing greater opportunities for cost-effectiveness as well as success. Investments in design and verification tools, IP, and manufacturing are converging to help overcome previous barriers, paving the way for adoption of multi-die systems to ramp up. Read on for more insights into what’s on tap for multi-die systems in the coming year.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Why MIPS is Betting Big on RISC-V: Q&A with RISC-V International and MIPS
- A Primer on Multi-Die Systems
- An Industry-Wide Look at the Move Toward Multi-Die Systems
- Meeting Requirements for UCIe-Based Multi-Die Systems Success
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power