The Five Must-Have Features of Modern Automotive SoC Architectures
The automotive industry is experiencing a remarkable transformation driven by groundbreaking innovations such as advanced driver assistance systems (ADAS), autonomous driving, electric, and connected cars. These cutting-edge innovations demand state-of-the-art system-on-chip (SoC) architectures that can provide unprecedented high performance, safety, low power, security, and connectivity to support these new technologies.
This post introduces a series of articles describing the five critical features of automotive SoC architectures that are essential for developing the next generation of passenger vehicles.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Blogs
- The Future of Technology: Trends in Automotive
- Why Modern SoC need cache-coherent NoC?
- AI Based Software Designing AI Based Hardware - Autonomous Automotive SoC Platform
- DisplayPort 2.1 vs DisplayPort 1.4: A Detailed Comparison of Key Features
Latest Blogs
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Pushing the Boundaries of Memory: What’s New with Weebit and AI
- Root of Trust: A Security Essential for Cyber Defense
- Evolution of AMBA AXI Protocol: An Introduction to the Issue L Update
- An Introduction to AMBA CHI Chip-to-Chip (C2C) Protocol