The Five Must-Have Features of Modern Automotive SoC Architectures
The automotive industry is experiencing a remarkable transformation driven by groundbreaking innovations such as advanced driver assistance systems (ADAS), autonomous driving, electric, and connected cars. These cutting-edge innovations demand state-of-the-art system-on-chip (SoC) architectures that can provide unprecedented high performance, safety, low power, security, and connectivity to support these new technologies.
This post introduces a series of articles describing the five critical features of automotive SoC architectures that are essential for developing the next generation of passenger vehicles.
To read the full article, click here
Related Semiconductor IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
- Lossless & Lossy Frame Compression IP
Related Blogs
- Rambus Wins Automotive Cybersecurity Innovation of the Year at 2024 AutoTech Breakthrough Awards
- The Future of Technology: Trends in Automotive
- Why Modern SoC need cache-coherent NoC?
- AI Based Software Designing AI Based Hardware - Autonomous Automotive SoC Platform
Latest Blogs
- MIPS P8700 RISC-V Processor for Advanced Functional Safety Systems
- Boost SoC Flexibility: 4 Design Tips for Memory Subsystems with Combo DDR3/4 Interfaces
- High Bandwidth Memory Evolution from First Generation HBM to the Latest HBM4
- Keeping Pace with CXL Specification Revisions
- Silicon-proven LVTS for 2nm: a new era of accuracy and integration in thermal monitoring