The Five Must-Have Features of Modern Automotive SoC Architectures
The automotive industry is experiencing a remarkable transformation driven by groundbreaking innovations such as advanced driver assistance systems (ADAS), autonomous driving, electric, and connected cars. These cutting-edge innovations demand state-of-the-art system-on-chip (SoC) architectures that can provide unprecedented high performance, safety, low power, security, and connectivity to support these new technologies.
This post introduces a series of articles describing the five critical features of automotive SoC architectures that are essential for developing the next generation of passenger vehicles.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- The Evolving Role of Layout-Versus-Schematic (LVS) Checking for Modern SoCs
- Ensuring Integrity: The Role of SoC Security in Today's Digital World
- Exploring the Security Framework of RISC-V Architecture in Modern SoCs
- Rambus Wins Automotive Cybersecurity Innovation of the Year at 2024 AutoTech Breakthrough Awards
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview