Can Sub-Arctic Temperature Circuits Solve the AI Energy Challenge?
The AI era is fostering unprecedented innovation across industries and creating acute challenges for the high-performance computing (HPC) industry to support exponential power and performance demands. AI alone is poised to increase data center power demand by 160 percent by 2030, as queries from applications like ChatGPT require nearly 10X the electricity to process as a Google search. The HPC ecosystem is exploring new semiconductor designs to unlock next-generation infrastructures that deliver greater performance and energy efficiency. One promising area of semiconductor research looks to answer the question, “Can sub arctic-cold, microscopic circuits = a more energy efficient AI data center?” Enter – cryogenic CMOS.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- Parameterizable compact BCH codec
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
Related Blogs
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Bluetooth set as short range wireless standard for smart energy!
- ARM A Huge Challenge For Intel
- The Chip Challenge For Japan
Latest Blogs
- What Does a GPU Have to Do With Automotive Security?
- Physical AI at the Edge: A New Chapter in Device Intelligence
- Rivian’s autonomy breakthrough built with Arm: the compute foundation for the rise of physical AI
- AV1 Image File Format Specification Gets an Upgrade with AVIF v1.2.0
- Industry’s First End-to-End eUSB2V2 Demo for Edge AI and AI PCs at CES