Can Sub-Arctic Temperature Circuits Solve the AI Energy Challenge?
The AI era is fostering unprecedented innovation across industries and creating acute challenges for the high-performance computing (HPC) industry to support exponential power and performance demands. AI alone is poised to increase data center power demand by 160 percent by 2030, as queries from applications like ChatGPT require nearly 10X the electricity to process as a Google search. The HPC ecosystem is exploring new semiconductor designs to unlock next-generation infrastructures that deliver greater performance and energy efficiency. One promising area of semiconductor research looks to answer the question, “Can sub arctic-cold, microscopic circuits = a more energy efficient AI data center?” Enter – cryogenic CMOS.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related Blogs
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Bluetooth set as short range wireless standard for smart energy!
- ARM A Huge Challenge For Intel
- The Chip Challenge For Japan
Latest Blogs
- SiFive Celebrates 10 Years as Your Trusted Partner for RISC-V IP Innovation
- MIPI: Powering the Future of Connected Devices
- ESD Protection for an High Voltage Tolerant Driver Circuit in 4nm FinFET Technology
- Designing the AI Factories: Unlocking Innovation with Intelligent IP
- Smarter SoC Design for Agile Teams and Tight Deadlines