SOC Design Techniques that Enable Autonomous Vehicles
Robots – we have all been waiting for them since we were young. We watched Star Wars, or in the case of the slightly longer-lived of us, we watched Forbidden Planet or Lost in Space. We knew that our future robot friends would be able to move around and interact with their environment. What we did not foresee long ago was that instead of moving among us, we would be riding inside of the first widely produced robots – namely autonomous cars.
It’s pretty clear now to see that cars are the perfect platform for a machine that autonomously interacts with their environment. Typically, they traverse a smooth flat surface, have well defined interactions – starting, stopping, turning. They have the room, cooling and power for the substantial computing requirements necessary for their operation. Automating driving will also provide huge benefits to people. Instead of needing to be fully engaged in operating a vehicle – “drivers” will ultimately be able to focus on other activities while in their cars. In the near term autonomous vehicle will improve traffic safety.
Related Blogs
- 4 Ways that Digital Techniques Can Speed Up Memory Design and Verification
- New Research Enablement Kit: SoC Design and Prototyping
- The Design that Made ARM
- An Easy Path to Bluetooth 5-enabled SoC Design
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?