Exploring the Security Framework of RISC-V Architecture in Modern SoCs
Introduction to System on Chip (SoC) Security
In the rapidly evolving world of technology, System-on-chip (SoC) designs have become a cornerstone for various applications, from automotive and mobile devices to data centers. These complex systems integrate multiple processors, a multi-level cache hierarchy, and various subsystems that share memory and system resources. However, this open access to shared memory and resources introduces potential security vulnerabilities in SoC designs.
Recognizing the importance of security, the RISC-V architecture, which is increasingly adopted in SoCs, offers a robust solution to address these concerns. The Physical Memory Protection (PMP) unit within RISC-V architecture plays a pivotal role in enhancing SoC security by controlling the access to physical memory addresses.
The Role of RISC-V PMP in SoC Security
To read the full article, click here
Related Semiconductor IP
- RISC-V CPU IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
- RISC-V High Performance Processor
- 32b/64b RISC-V 5-stage, scalar, in-order, Application Processor. Linux and multi-core capable. Maps upto ARM A-35. Optimal PPA.
Related Blogs
- Physically Unclonable Functions as a Solid Foundation of Platform Security Architecture
- RiVer Core: A RISC-V Core Verification Framework
- Design for differentiation: architecture licenses in RISC-V
- Make the right choices for enhanced security on RISC-V
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview