Exploring the Security Framework of RISC-V Architecture in Modern SoCs
Introduction to System on Chip (SoC) Security
In the rapidly evolving world of technology, System-on-chip (SoC) designs have become a cornerstone for various applications, from automotive and mobile devices to data centers. These complex systems integrate multiple processors, a multi-level cache hierarchy, and various subsystems that share memory and system resources. However, this open access to shared memory and resources introduces potential security vulnerabilities in SoC designs.
Recognizing the importance of security, the RISC-V architecture, which is increasingly adopted in SoCs, offers a robust solution to address these concerns. The Physical Memory Protection (PMP) unit within RISC-V architecture plays a pivotal role in enhancing SoC security by controlling the access to physical memory addresses.
The Role of RISC-V PMP in SoC Security
To read the full article, click here
Related Semiconductor IP
- MIPI I3C Master RISC-V based subsystem
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
- RISC-V Vector Extension
- RISC-V Real-time Processor
Related Blogs
- Physically Unclonable Functions as a Solid Foundation of Platform Security Architecture
- RiVer Core: A RISC-V Core Verification Framework
- Design for differentiation: architecture licenses in RISC-V
- Make the right choices for enhanced security on RISC-V
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+