Running X-Propagation with Low-Power Simulation
In today's ever-evolving semiconductor industry, the pursuit of low-power designs has become paramount. With the increasing demand for energy-efficient devices, the need for low-power simulation methodologies has grown exponentially. One crucial aspect of low-power simulation that often remains underestimated is X-propagation analysis. In this blog, we will delve into the world of low-power simulation, focusing on why running X-propagation is key for verification closure. We will explore the challenges posed by unknown values (Xs) in digital circuits, the impact of low-power design techniques, and the critical role that X-propagation plays in ensuring reliable, power-efficient electronic systems.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
Related Blogs
- Samsung Foundry Accelerates Billion-Gate Low-Power Signoff with Synopsys VC LP
- Keep Legacy Systems Running with a DO-254 HDLC & SDLC Part Replacement IP Core
- Unlock early software development for custom RISC-V designs with faster simulation
- Xilinx unleashes triad of low-power, 28nm FPGA families with very promising characteristics for memory interfacing
Latest Blogs
- CNNs and Transformers: Decoding the Titans of AI
- How is RISC-V’s open and customizable design changing embedded systems?
- Imagination GPUs now support Vulkan 1.4 and Android 16
- From "What-If" to "What-Is": Cadence IP Validation for Silicon Platform Success
- Accelerating RTL Design with Agentic AI: A Multi-Agent LLM-Driven Approach