Running X-Propagation with Low-Power Simulation
In today's ever-evolving semiconductor industry, the pursuit of low-power designs has become paramount. With the increasing demand for energy-efficient devices, the need for low-power simulation methodologies has grown exponentially. One crucial aspect of low-power simulation that often remains underestimated is X-propagation analysis. In this blog, we will delve into the world of low-power simulation, focusing on why running X-propagation is key for verification closure. We will explore the challenges posed by unknown values (Xs) in digital circuits, the impact of low-power design techniques, and the critical role that X-propagation plays in ensuring reliable, power-efficient electronic systems.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Samsung Foundry Accelerates Billion-Gate Low-Power Signoff with Synopsys VC LP
- Keep Legacy Systems Running with a DO-254 HDLC & SDLC Part Replacement IP Core
- Unlock early software development for custom RISC-V designs with faster simulation
- Xilinx unleashes triad of low-power, 28nm FPGA families with very promising characteristics for memory interfacing
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power