Running X-Propagation with Low-Power Simulation
In today's ever-evolving semiconductor industry, the pursuit of low-power designs has become paramount. With the increasing demand for energy-efficient devices, the need for low-power simulation methodologies has grown exponentially. One crucial aspect of low-power simulation that often remains underestimated is X-propagation analysis. In this blog, we will delve into the world of low-power simulation, focusing on why running X-propagation is key for verification closure. We will explore the challenges posed by unknown values (Xs) in digital circuits, the impact of low-power design techniques, and the critical role that X-propagation plays in ensuring reliable, power-efficient electronic systems.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Keep Legacy Systems Running with a DO-254 HDLC & SDLC Part Replacement IP Core
- Unlock early software development for custom RISC-V designs with faster simulation
- Running Optimized PyTorch Models on Cadence DSPs with ExecuTorch
- Xilinx unleashes triad of low-power, 28nm FPGA families with very promising characteristics for memory interfacing
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform