RISC-V: An Open Standard for SoCs
The case for an open ISA
Systems-on-a-chip (SoCs), where the processors and caches are a small part of the chip, are becoming ubiquitous. Thus many more companies today are making chips that include processors than in the past. Given that the industry has been revolutionized by open standards and open-source software -- like TCP/IP and Linux -- why is one of the most important interfaces proprietary?
While instruction set architectures (ISAs) may be proprietary for historical or business reasons, there is no good technical reason for the lack of free, open ISAs.
It's not an error of omission. Companies with successful ISAs like ARM, IBM, Intel, and MIPS have patents on quirks of their ISAs, which prevent others from using them without licenses that academia and many small companies can't afford. Even IBM's OpenPower is an oxymoron; you must pay IBM to use its ISA.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- RISC-V: An Open Standard - Backed by a Global Community - to Enable Open Computing for All
- Have you checked the hidden costs of deploying an open source RISC-V core?
- Closing the Gap in SoC Open Standards with RISC-V
- SoCs stalk the networking market, and global finance is an issue
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?