Closing the Gap in SoC Open Standards with RISC-V
The semiconductor industry has changed hugely in the last 3 or 4 decades. Around 1980 some larger semiconductor companies were strongly vertically integrated, not only designed and manufactured their products, but even made their own processing equipment and in-house EDA tools. Today almost every semiconductor company uses 3rd party equipment for IC manufacturing and designs using 3rd party EDA tools and 3rd party IP. A key reason why the disaggregation of the semiconductor industry has happened is the use of open standards.
There is no universally agreed definition of an open standard but it is generally agreed that they are available on a reasonable and non-discriminatory basis. In many cases, especially in SoC design, such standards are available on a royalty-free basis. Many open standards are owned by independent bodies such as the IEEE, OSI and IETF (internet engineering task force) rather than by companies. In such cases the further development of the standard is through an open process with widely-based participation.
To read the full article, click here
Related Semiconductor IP
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- 32 bit RISC-V Multicore Processor with 256-bit VLEN and AMM
- All-In-One RISC-V NPU
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
Related Blogs
- From vision to reality in RISC-V: Interview with Karel Masarik
- Solve SoC Bottlenecks with Smart Local Memory in AI/ML Subsystems
- Exploring the Security Framework of RISC-V Architecture in Modern SoCs
- Addressing Challenges with FPGAs in Space Using the GR716B Microcontroller
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power