PCIe Spread Spectrum Clocking (SSC) for Verification Engineers
Many of us who work primarily in digital verification and design are shielded from physical layer details. Only a handful of specialists closely follow these details. So for the rest of us, verifying and debugging Spread Spectrum Clocking (SSC) can be a daunting task.
This blog post is a quick Q&A to give you a jump start in understanding some of the complexities of PCI Express (PCIe) Spread spectrum clocking (SSC) techniques.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Building Verification Infrastructure for Complex PCIe Verification
- Industry's First Verification IP for PCIe 7.0
- Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges
- 3 Reasons Why Verification Engineers should use Python instead of Perl
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?