Environmental Noise Cancellation (ENC): Part 2 - Noise types and classic methods for Speech Enhancement
In part 1, we discussed some important concepts related to sound processing and environmental noise cancellation that are essential to keep in mind when designing an ENC (Environmental Noise Cancellation) system. Now, let’s talk about the rest of the equation, which is the noise itself. In this section, we will characterize common noise types and explore some of the classical speech enhancement methods that are commonly used to tackle this problem.
Researchers typically categorize noises as either stationary or non-stationary, depending on different characteristics. Understanding the differences between these two types of noise can provide valuable insights into their properties and ways to deal with them.
Stationary noise refers to noise that remains relatively constant in its statistical properties over time. In other words, its statistical characteristics such as mean, variance, and autocorrelation remain constant or change only slightly over time. Common examples of stationary noise include the hum of an air conditioner or the constant hum of a refrigerator. Stationary noise can often be easily characterized and analyzed using mathematical techniques, making it suitable for various analytical algorithms to predict and cancel.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Ultra Ethernet Consortium Set to Enable Scaling of Networking Interconnects for AI and HPC
- Integrating SpaceWire and SpaceFibre for Space Communication
- Beyond 5G expect ISAC for Radar Positioning and More
- Alphawave Semi Tapes Out Industry-First, Multi-Protocol I/O Connectivity Chiplet for HPC and AI Infrastructure
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform