Today's Complex Networking Chips Demand Hardware Emulation
Project teams designing complex switches and routers have turned to hardware emulation as the foundation for their verification strategy to battle network congestion and outages.
We consumers are needy -- the three billion or so of us who use electronic devices want on-demand access to download emails, texts, videos, and all other forms of communications fast and (often) at the same time. It's little wonder, then, that networking switch and router designs have become some of the most complex of all chip designs as their sizes and complexities push north of five-hundred million ASIC-equivalent gates.
It is an axiom that the more complex the chip, the more difficult verification becomes because of all the paths that need to be verified. With embedded software nowadays implementing more and more chip functionality, thorough chip verification and validation is getting out of control. In the network domain, efficiency is critical for higher bandwidth, lower latency, and fewer network failures. Collisions are to be avoided at all costs.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related Blogs
- The Future of Hardware Emulation
- A Great Match: SoC Verification & Hardware Emulation
- Hardware Emulation: One Verification Tool, Unending Possibilities
- Risk Avoidance, Hardware Emulation Style
Latest Blogs
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Pushing the Boundaries of Memory: What’s New with Weebit and AI
- Root of Trust: A Security Essential for Cyber Defense
- Evolution of AMBA AXI Protocol: An Introduction to the Issue L Update
- An Introduction to AMBA CHI Chip-to-Chip (C2C) Protocol