Is NASA's design opportunity for FPGAs in space vanishing in favor of privatized platforms?
Not so long ago, the opportunities for rad-hardened FPGAs used in space applications rested with the Defense Department or NASA. The rise of privatized launches and open-architecture microsatellites like CubeSat, however, have made NASA design-ins the exception rather than the rule.
This reality was drilled home in late June as 4DSP LLC announced a $42,479 contract from NASA's Langley Research Center, to use 3U CompactPCI cards based on a Virtex-6 as part of a terrestrial platform to test space instruments. Only a few years ago, NASA and Air Force contracts utilizing FPGAs were commonplace. Now, it's time for microsatellites designed by academia and private industry.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Addressing Challenges with FPGAs in Space Using the GR716B Microcontroller
- NASA Uses RISC-V Vector Spec to Soup Up Space Computers
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Akida in Space
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform