Imagination's neural network accelerator and Visidon's denoising algorithm prove to be perfect partners
This blog post is a result of a collaboration between Visidon, headquartered in Finland and Imagination, based in the UK. Visidon is recognised as an expert in algorithms for camera image enhancement and analysis and Imagination has a series of world-beating neural network accelerators (NNA) with performance up to 100 TOPS per second per core.
The problem tackled in this blog post is denoising images from conventional colour cameras. The solution is in two parts:
- Algorithms that remove the noise without damaging image detail.
- A high-performance convolution engine capable of running a trained neural network that takes a colour image as input and outputs a denoised colour image.
The process of denoising images has a long history. The way modern CMOS imagers work can be thought of as an array of photon counters. Photons arrive at the sensor at an average rate: fewer in dark regions with relatively high fluctuations, but more in brighter regions with relatively lower fluctuations, i.e., better signal-to-noise ratio. The fluctuations are the noise (with Poisson statistics) due to the physics of light and cannot, in general, be avoided. We can, however, remove the noise with further processing. The key thing is to do this without damaging the picture content.
Over the years many solutions have been proposed. These include simply blurring a picture slightly, sophisticated approaches with a bilateral filter, Beltrami filters based on manifold theory, scale-space Kalman filters, etc.
The interesting points about denoising are firstly that noise is most obvious (to us) in flat regions of an image and noise is less visible (to us) near edges. Edges, though, are most likely to be blurred or damaged in some other way by many denoising algorithms. Damaged edges are as bad perceptually as noise!
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Imagination Technologies' Upgraded GPUs, New Neural Network Core Provide Deep Learning Processing Options
- Running LSTM neural networks on an Imagination NNA
- Self-Compressing Neural Networks
- Synopsys Fields Processor Core for Neural Network Computer Vision Applications
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview