How to Separate your Cryptographic Keys
When designing cryptographic protocols and systems, many guiding principles ought to be respected. Often, these guiding principles are lessons learned from years of attacks and vulnerabilities against supposedly secure systems. Today we will look at one of the most prominent principles in cryptographic design – the principle of key separation. While the ideas behind key separation seem straightforward, we will see that it is not always trivial to spot cases of poorly implemented key separation. To show this, we will look at the example of the recent attacks on the MEGA cloud storage platform that leverage poor key separation to achieve a full breach of security.
What is key separation?
To read the full article, click here
Related Semiconductor IP
- MIPI SoundWire I3S Peripheral IP
- MIPI SoundWire I3S Manager IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
Related Blogs
- How to Augment SoC Development to Conquer Your Design Hurdles
- How to Secure Your Computing System's Power-Up Process with Secure Boot?
- Plundervolt steals keys from cryptographic algorithms
- How Head Tracking Can Elevate Your Spatial Audio Experience
Latest Blogs
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
- Smarter ASICs and SoCs: Unlocking Real-World Connectivity with eFPGA and Data Converters