How to Safeguard Automotive OTA Updates at Scale
Imagine driving down a scenic country road at night and seeing the gleam of a deer’s eyes ahead. Before you can react, the car slows and steers away from the deer and avoids the car in the next lane. This is the power of driver assist and AI-powered autonomous driving. Now imagine the same scenario a few days later, and the vehicle does not respond. Not only is the vehicle damaged, but there is also wildlife and passenger injury. What happened?
This is where the power of automotive over-the-air (OTA) updates comes into play. Manufacturers can now determine not only how the vehicle reacted but why. Was it a software error, a bad software update, or simply an adjustment in operating parameters that led to the event? Never have manufacturers had such insight into a vehicle’s operation. Never have they had the ability to fix issues at such large scale without a service visit. OTA update capabilities provide great benefits and bottom-line savings, but poor implementation or bad software development practices could lead to costly mistakes.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- What is OTA in automotive? Over the air updates explained.
- How to Meet Self-Driving Automotive Design Goals Part 1
- How to Meet Self-Driving Automotive Design Goals Part 2
- How 5G is Driving AI at the Edge
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA