How to Safeguard Automotive OTA Updates at Scale
Imagine driving down a scenic country road at night and seeing the gleam of a deer’s eyes ahead. Before you can react, the car slows and steers away from the deer and avoids the car in the next lane. This is the power of driver assist and AI-powered autonomous driving. Now imagine the same scenario a few days later, and the vehicle does not respond. Not only is the vehicle damaged, but there is also wildlife and passenger injury. What happened?
This is where the power of automotive over-the-air (OTA) updates comes into play. Manufacturers can now determine not only how the vehicle reacted but why. Was it a software error, a bad software update, or simply an adjustment in operating parameters that led to the event? Never have manufacturers had such insight into a vehicle’s operation. Never have they had the ability to fix issues at such large scale without a service visit. OTA update capabilities provide great benefits and bottom-line savings, but poor implementation or bad software development practices could lead to costly mistakes.
To read the full article, click here
Related Semiconductor IP
- Configurable CPU tailored precisely to your needs
- Ultra high-performance low-power ADC
- HiFi iQ DSP
- CXL 4 Verification IP
- JESD204E Controller IP
Related Blogs
- What is OTA in automotive? Over the air updates explained.
- A Look Under the Hood at MIPI CSI-2 and MIPI DSI-2 in Automotive
- How Software-Defined Vehicles Expand the Automotive Revenue Stream
- Building Sustainable 5G Network Infrastructure at Scale
Latest Blogs
- The Memory Imperative for Next-Generation AI Accelerator SoCs
- Leadership in CAN XL strengthens Bosch’s position in vehicle communication
- Validating UPLI Protocol Across Topologies with Cadence UALink VIP
- Cadence Tapes Out 32GT/s UCIe IP Subsystem on Samsung 4nm Technology
- LPDDR6 vs. LPDDR5 and LPDDR5X: What’s the Difference?