How Silicon Lifecycle Management Strengthens HPC and Data Center Reliability
Beyond the hyper-connected, AI-driven, answers-at-your-fingertips convenience, the need for high-performance computing (HPC) and hyperscale levels of storage can be existential. Supercomputers are helping to improve the outcomes in everything from mathematical models to climate predictions, and cloud data centers house the infrastructure that keeps our digital lives humming. There is more data today than has ever existed before. It moves at high speeds across vast distances. Silicon process nodes are shrinking, pushing the reticle boundaries of manufacturing, giving rise to multi-die systems that are forging new possibilities in performance.
With all this advanced complexity in electronic systems, you might ask, what can go wrong? Simply put: a lot. Silent Data Corruption (SDC), the errors happening undetected below the surface, are real, as is device aging, thermal and power challenges, and more. These challenges can be a headache and quite possibly culminate in catastrophe if they aren’t handled well—especially if you are dealing with these issues at scale.
Other issues?
For SoC designers, greater complexity is a forcing function for employing a silicon lifecycle management (SLM) strategy to ensure the reliability, availability, and serviceability (RAS) of your devices. In fact, knowing what is happening inside your final product, along with understanding the long-term RAS implications, is essential for design success.
To read the full article, click here
Related Semiconductor IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
- LLM AI IP Core
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
Related Blogs
- VIP Portfolio Expands for Data-Intensive Hyperscale Data Centers, HPC, and AI/ML
- DDR5 12.8Gbps MRDIMM IP: Powering the Future of AI, HPC, and Data Centers
- How CXL 3.0 Fuels Faster, More Efficient Data Center Performance
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
Latest Blogs
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained
- Smarter ASICs and SoCs: Unlocking Real-World Connectivity with eFPGA and Data Converters
- RISC-V Takes First Step Toward International Standardization as ISO/IEC JTC1 Grants PAS Submitter Status
- Running Optimized PyTorch Models on Cadence DSPs with ExecuTorch
- PCIe 6.x: Synopsys IP Selected as First Gold System for Compliance Testing