How do you Verify the AMBA System Level Environment?
In my previous blog, AMBA based Subsystems: What does it take to verify them?, I had discussed some of the key verification challenges when it comes to verifying complex SOCs based on AMBA based subsystems. It was observed that it would indeed be useful to have an extensible AMBA based verification environment which can be tweaked minimally so that it can be reused for new systems or derivatives.
To enable SOC verification engineers to create highly configurable AMBA fabric, the system environment should provide place-holders for hooking the DUT with any of the quintessential AMBA VIP components such as AXI3/4/ACE, AHB or APB. With the use of AMBA System environment we can configure it to instantiate as many number of AXI/AHB/APB VIP with minimal additional code. Thus, such an environment would need to encapsulate the following among others:
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- AMBA based Subsystems: What does it take to verify them? - The AMBA System Level Environment
- Do you have the right 'connection'?
- How Do You Verify a NoC?
- AMBA based Subsystems: What does it take to verify them?
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms