Embracing Multi-Die Systems and Photonics for Aerospace and Government Applications
If you were to open an aircraft from 30 years ago, the stark contrast in technological capabilities when compared to a modern aircraft would be readily apparent to even those unfamiliar with the aerospace industry. Traditional aircraft once relied on copper wires for transmitting electrical signals and data. However, with the emergence of new chip architectures and the growing benefits of fiber optics, as well as the replacement of metals such as aluminum with carbon fiber, the way that today’s government, aerospace, and defense systems are designed has changed dramatically.
In particular, two technologies are taking the industry by storm with their impressive growth and development trajectory: 3D heterogeneous integration and photonics.
Before we delve into how these technologies are driving innovation and enabling more advanced and efficient solutions from ground to space, let’s start by establishing some important definitions.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- SLM Solutions for Mission-Critical Aerospace and Government Chip Designs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Ensuring the Health and Reliability of Multi-Die Systems
- How Photonics Can Light the Way for Higher Performing Multi-Die Systems
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?