Embracing Multi-Die Systems and Photonics for Aerospace and Government Applications
If you were to open an aircraft from 30 years ago, the stark contrast in technological capabilities when compared to a modern aircraft would be readily apparent to even those unfamiliar with the aerospace industry. Traditional aircraft once relied on copper wires for transmitting electrical signals and data. However, with the emergence of new chip architectures and the growing benefits of fiber optics, as well as the replacement of metals such as aluminum with carbon fiber, the way that today’s government, aerospace, and defense systems are designed has changed dramatically.
In particular, two technologies are taking the industry by storm with their impressive growth and development trajectory: 3D heterogeneous integration and photonics.
Before we delve into how these technologies are driving innovation and enabling more advanced and efficient solutions from ground to space, let’s start by establishing some important definitions.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- LPDDR6: A New Standard and Memory Choice for AI Data Center Applications
- How Photonics Can Light the Way for Higher Performing Multi-Die Systems
- Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform