The Importance of Ecosystem Cooperation for Interoperability
Last week, Arm launched their new “Automotive Enhanced IP Products,” a new suite of automotive technologies to help cut development cycles by up to two years and meet vehicle performance, safety, and AI demands.
This launch is a prime example of how ecosystems work together to accelerate schedules and improve quality and, in this case, safety. The “Arm Ecosystem of Trust” features 66 partners, and Arm emphasized both the software and hardware aspects in respective Blog posts. In “Ecosystem Collaborations Bring Full Stack Software Solutions to Develop Leading-edge Automotive Applications From Day One” Robert Day describes how the full stack software solutions allow automotive partners to innovate using virtual platforms immediately. Focused on the hardware aspects, Tom Conway describes in “Arm’s Broadest Ever Automotive Enhanced IP Portfolio Designed for the Future of Computing in Vehicles” how Arms’ new Automotive Enhanced (AE) processors deliver AI-accelerated computing for automotive markets.
One critical part of Tom’s article is the description of how the ecosystem works:
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Blogs
- Pioneering Seamless Interoperability on Cloud Across the Semiconductor Design Ecosystem
- New TSMC 28nm Design Ecosystem!
- What Will 2012 Bring The Semiconductor Ecosystem?
- NVMe storage-optimized PCIe interface gets an Interoperability Lab at University of New Hampshire
Latest Blogs
- ReRAM in Automotive SoCs: When Every Nanosecond Counts
- AndeSentry – Andes’ Security Platform
- Formally verifying AVX2 rejection sampling for ML-KEM
- Integrating PQC into StrongSwan: ML-KEM integration for IPsec/IKEv2
- Breaking the Bandwidth Barrier: Enabling Celestial AI’s Photonic Fabric™ with Custom ESD IP on TSMC’s 5nm Platform