Dynamic Vector Threading for High Efficiency in Fixed Wireless Access, vRAN & Massive MIMO Beamforming
Now that we’re getting comfortable with 5G, network operators are already planning for 5G-Advanced, release 18 of the 3GPP standard. The capabilities enabled by this new release – extended reality, centimeter level positioning and microsecond level timing outdoors and indoors – will create an explosion in compute demand in RAN infrastructure. Consider fixed wireless access for consumers and businesses. Beamforming through massive MIMO RRUs must manage heavy yet variable traffic, while UEs must support carrier aggregation. Both need more channel capacity. Solutions must be greener, high performance and low latency, more efficient in managing variable loads, and more cost effective to support wide scale deployment. Infrastructure equipment builders want all the power, performance, and unit cost advantages of DSP-based ASIC hardware, plus all these added capabilities, in a more efficient package.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- SiFive Accelerates RISC-V Vector Integration in XNNPACK for Optimized AI Inference
- Driving Higher Energy Efficiency in Automotive Electronics Designs
- Arm Kleidi Arrives in Automotive Markets to Accelerate Performance for AI-based Applications
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
Latest Blogs
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding
- Synopsys Expands Collaboration with Arm to Accelerate the Automotive Industry’s Transformation to Software-Defined Vehicles
- Deep Robotics and Arm Power the Future of Autonomous Mobility