Dynamic Vector Threading for High Efficiency in Fixed Wireless Access, vRAN & Massive MIMO Beamforming
Now that we’re getting comfortable with 5G, network operators are already planning for 5G-Advanced, release 18 of the 3GPP standard. The capabilities enabled by this new release – extended reality, centimeter level positioning and microsecond level timing outdoors and indoors – will create an explosion in compute demand in RAN infrastructure. Consider fixed wireless access for consumers and businesses. Beamforming through massive MIMO RRUs must manage heavy yet variable traffic, while UEs must support carrier aggregation. Both need more channel capacity. Solutions must be greener, high performance and low latency, more efficient in managing variable loads, and more cost effective to support wide scale deployment. Infrastructure equipment builders want all the power, performance, and unit cost advantages of DSP-based ASIC hardware, plus all these added capabilities, in a more efficient package.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- SiFive Accelerates RISC-V Vector Integration in XNNPACK for Optimized AI Inference
- Driving Higher Energy Efficiency in Automotive Electronics Designs
- Partial Header Encryption in Integrity and Data Encryption for PCIe
- Achronix and BigCat Wireless Collaborate for 5G/6G Wireless
Latest Blogs
- FiRa 3.0 Use Cases: Expanding the Future of UWB Technology
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits