Dynamic Vector Threading for High Efficiency in Fixed Wireless Access, vRAN & Massive MIMO Beamforming
Now that we’re getting comfortable with 5G, network operators are already planning for 5G-Advanced, release 18 of the 3GPP standard. The capabilities enabled by this new release – extended reality, centimeter level positioning and microsecond level timing outdoors and indoors – will create an explosion in compute demand in RAN infrastructure. Consider fixed wireless access for consumers and businesses. Beamforming through massive MIMO RRUs must manage heavy yet variable traffic, while UEs must support carrier aggregation. Both need more channel capacity. Solutions must be greener, high performance and low latency, more efficient in managing variable loads, and more cost effective to support wide scale deployment. Infrastructure equipment builders want all the power, performance, and unit cost advantages of DSP-based ASIC hardware, plus all these added capabilities, in a more efficient package.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Blogs
- SiFive Accelerates RISC-V Vector Integration in XNNPACK for Optimized AI Inference
- ESD Protection for an High Voltage Tolerant Driver Circuit in 4nm FinFET Technology
- Driving Higher Energy Efficiency in Automotive Electronics Designs
- Post-quantum security in platform management: PQShield is ready for SPDM 1.4
Latest Blogs
- A Low-Leakage Digital Foundation for SkyWater 90nm SoCs: Introducing Certus’ Standard Cell Library
- FPGAs vs. eFPGAs: Understanding the Key Differences
- UCIe D2D Adapter Explained: Architecture, Flit Mapping, Reliability, and Protocol Multiplexing
- RT-Europa: The Foundation for RISC-V Automotive Real-Time Computing
- Arm Flexible Access broadens its scope to help more companies build silicon faster