Dynamic Vector Threading for High Efficiency in Fixed Wireless Access, vRAN & Massive MIMO Beamforming
Now that we’re getting comfortable with 5G, network operators are already planning for 5G-Advanced, release 18 of the 3GPP standard. The capabilities enabled by this new release – extended reality, centimeter level positioning and microsecond level timing outdoors and indoors – will create an explosion in compute demand in RAN infrastructure. Consider fixed wireless access for consumers and businesses. Beamforming through massive MIMO RRUs must manage heavy yet variable traffic, while UEs must support carrier aggregation. Both need more channel capacity. Solutions must be greener, high performance and low latency, more efficient in managing variable loads, and more cost effective to support wide scale deployment. Infrastructure equipment builders want all the power, performance, and unit cost advantages of DSP-based ASIC hardware, plus all these added capabilities, in a more efficient package.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
- Flash Memory LDPC Decoder IP Core
Related Blogs
- ESD Protection for an High Voltage Tolerant Driver Circuit in 4nm FinFET Technology
- SiFive Accelerates RISC-V Vector Integration in XNNPACK for Optimized AI Inference
- Driving Higher Energy Efficiency in Automotive Electronics Designs
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
Latest Blogs
- What It Will Take to Build a Resilient Automotive Compute Ecosystem
- The Blind Spot of Semiconductor IP Sales
- Scalable I/O Virtualization: A Deep Dive into PCIe’s Next Gen Virtualization
- UEC-LLR: The Future of Loss Recovery in Ethernet for AI and HPC
- Trust at the Core: A Deep Dive into Hardware Root of Trust (HRoT)