Early, Accurate, and Faster Exploration and Debug of Worst-Case Design Failures with ML-Based Spectre FMC Analysis
Process nodes with smaller geometries have always enticed chip manufacturers and OEMs, as it helps integrate more functionality over SoC. However, using smaller transistors increases complexity and poses many challenges for IC design engineers. At advanced nodes, it is very challenging to ensure a high yield due to large process variations. Primarily, yield helps to determine profitability and shows a clear picture of the quality, so it plays a critical role in semiconductor manufacturing. The purpose of aggressive process scaling is only met if a high yield is ensured and verified. IC designers use Monte Carlo (MC) simulations to find the worst-case design failures and estimate the yield before mass production. This method attains accuracy at the cost of long run-time for analog simulations. With the shrinking time-to-market windows, can we afford to run millions or even billions of statistical simulations and spend so much time on verification?
Cadence Spectre FMC analysis uses machine learning (ML) and advanced statistical techniques to enable early, accurate, and significantly faster yield estimation than traditional brute-force Monte Carlo simulations.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related Blogs
- Side-Channel Attacks Target Machine Learning (ML) Models
- The Wonders of Machine Learning: Tackling Lint Debug Quickly with Root-Cause Analysis (Part 3)
- Alif Is Creating SoC Solutions for Machine Learning with Cadence and Arm
- Accelerating Machine Learning Deployment with CEVA Deep Neural Network (CDNN)
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?