Bringing Power Efficiency to TinyML, ML-DSP and Deep Learning Workloads
In recent times, the need for real-time decision making, reduced data throughput, and privacy concerns, has moved a substantial portion of AI processing to the edge. This shift has given rise to a multitude of Edge AI applications, each introducing its unique set of requirements and challenges. And a $50B AI SoC market is forecast for 2025 [Source: Pitchbook Emerging Tech Research], with Edge AI chips expected to make up a significant portion of this market.
The Shift of AI processing to the edge and its Power Efficiency Imperative
The shift of AI processing to the edge marks a new era of real-time decision-making across a range of applications, from IoT sensors to autonomous systems. This shift helps reduce latency which is critical for instant responses, enhances data privacy through local processing, enables offline functionality, and ensures uninterrupted operation in remote or challenging environments. As these edge applications run under energy constrained conditions and battery powered devices, power efficiency takes center stage in this transformative landscape.
To read the full article, click here
Related Semiconductor IP
- ISO/IEC 7816 Verification IP
- 50MHz to 800MHz Integer-N RC Phase-Locked Loop on SMIC 55nm LL
- Simulation VIP for AMBA CHI-C2C
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
Related Blogs
- Neoverse CSS N3: Fastest Path to Market Leading Power Efficiency
- 3 steps to shrinking your code size, your costs, and your power consumption
- Scaling Out Deep Learning (DL) Inference and Training: Addressing Bottlenecks with Storage, Networking with RISC-V CPUs
- Revolutionizing Power Efficiency in PCIe 6.x: L0p and Flit Mode in Action
Latest Blogs
- A Comparison on Different AMBA 5 CHI Verification IPs
- Cadence Recognized as TSMC OIP Partner of the Year at 2025 OIP Ecosystem Forum
- Accelerating Development Cycles and Scalable, High-Performance On-Device AI with New Arm Lumex CSS Platform
- Desktop-Quality Ray-Traced Gaming and Intelligent AI Performance on Mobile with New Arm Mali G1-Ultra GPU
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet