Balancing GPU workloads on PowerVR hardware
If you’ve been following this series of posts from the beginning you probably know the drill by now. We have a new documentation website, which is packed full of helpful tips and tricks for developers of all knowledge levels. One of our most useful documents, for both new and experienced developers, is our PowerVR Performance Recommendations. This document gives you the knowledge you need to get the most out of your applications running on PowerVR hardware. This post is based on one of these recommendations and is focussed on eliminating performance bottlenecks by balancing different GPU workloads.
Removing performance bottlenecks
Performance bottlenecks are the bane of any graphics developer’s existence. They can be incredibly aggravating and very painful if you’re forced to choose between performance and visual quality. But wait – before you rush to do anything drastic, it’s important to remember that bottlenecks can be caused by a particularly heavy workload on an individual processing element of the GPU. By spreading out that workload across more of your GPU’s capabilities, you can potentially eliminate the bottleneck entirely.
However, before you can figure out how to balance the GPU workload, you have to know how it is distributed in the first place. This is where PowerVR’s powerful profiling and analysis tools come in.
To read the full article, click here
Related Semiconductor IP
- E-Series GPU IP
- Arm's most performance and efficient GPU till date, offering unparalled mobile gaming and ML performance
- 3D OpenGL ES 1.1 GPU IP core
- 2.5D GPU
- 2D GPU Hardware IP Core
Related Blogs
- Arm GPUs built on new 5th Generation GPU architecture to redefine visual computing
- Focus on Memory at AI Hardware Summit
- Red Hat Brings Their Enterprise Linux On SiFive Hardware!
- Scaling up vs scaling down. The real scoop on power-efficient GPUs for laptops
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power