Achieving Greater Safety for Tomorrow's Autonomous Vehicles
With the evolution of autonomous vehicles, today’s cars are becoming both more connected and complex. Consumers and suppliers worldwide are demanding much more intelligence and customization, which adds pressure on product development teams to validate the underlying technology and start their design processes months earlier. Enhancements in hardware and software features also mean that the way designers think about automotive safety and security at the system-on-chip (SoC) level must evolve.
While fully autonomous vehicles are still a ways off, there’s a good chance that your car already has driver assistance features such as adaptive cruise control, lane guidance, or active braking. However, as the number of sensors being integrated in automotive systems increases to enable new capabilities, building security and quality into all stages of the design’s lifecycle becomes integral.
The requirements for automotive design are changing, from the silicon all the way to the fully assembled vehicle. Going forward, security and safety are inseparable considerations for automotive SoCs.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
Related Blogs
- SOC Design Techniques that Enable Autonomous Vehicles
- Autonomous Vehicles: Memory Requirements & Deep Neural Net Limitations
- Autonomous Vehicles: Everything about self-driving cars explained
- Enabling next generation vehicles with ARM Artisan Physical IP
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production