Achieving Greater Safety for Tomorrow's Autonomous Vehicles
With the evolution of autonomous vehicles, today’s cars are becoming both more connected and complex. Consumers and suppliers worldwide are demanding much more intelligence and customization, which adds pressure on product development teams to validate the underlying technology and start their design processes months earlier. Enhancements in hardware and software features also mean that the way designers think about automotive safety and security at the system-on-chip (SoC) level must evolve.
While fully autonomous vehicles are still a ways off, there’s a good chance that your car already has driver assistance features such as adaptive cruise control, lane guidance, or active braking. However, as the number of sensors being integrated in automotive systems increases to enable new capabilities, building security and quality into all stages of the design’s lifecycle becomes integral.
The requirements for automotive design are changing, from the silicon all the way to the fully assembled vehicle. Going forward, security and safety are inseparable considerations for automotive SoCs.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related Blogs
- SOC Design Techniques that Enable Autonomous Vehicles
- Autonomous Vehicles: Memory Requirements & Deep Neural Net Limitations
- Autonomous Vehicles: Everything about self-driving cars explained
- Enabling next generation vehicles with ARM Artisan Physical IP
Latest Blogs
- Securing The Road Ahead: MACsec Compliant For Automotive Use
- Beyond design automation: How we manage processor IP variants with Codasip Studio
- Cadence Extends Support for Automotive Solutions on Arm Zena Compute Subsystems
- The Role of GPU in AI: Tech Impact & Imagination Technologies
- Time-of-Flight Decoding with Tensilica Vision DSPs - AI's Role in ToF Decoding