What's Driving the World's First Analog and Mixed-Signal Emulation Technology?
Whether your application is security, edge computing, high-performance data centers, mobile, or any other advanced design, today’s semiconductors are smarter, faster, and more sophisticated than ever. Often built with multi-die components, they are comprised of distinct technologies optimized for specific functions through a web of sophisticated interconnects in a single package.
There is no doubt that advanced semiconductors are catapulting us into a new stratosphere of power, performance, and area (PPA) optimization. But while the benefits far outstrip the generation-to-generation Moore’s law gains of old, advanced SoCs are also introducing a great deal of complexity into the design process, including the convergence of analog and digital domains into single systems. In fact, the verification challenges of integrating analog and digital technologies can leave engineers finding bugs after silicon fabrication, leading to a higher risk of failure, increased costs, and lengthened schedules.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Faster, Higher Capacity Emulation and Prototyping for AI Workloads
- How to Design Analog/Mixed Signal (AMS) at 28nm
- Mixed Signal Success Requires the Voice of Analog Designers
- NEC architects - around mixed-signal roadblocks
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview