Addressing Signal and Power Integrity for High-Speed Data Center Applications
With increasingly larger volumes of data and incessant demands for faster results, chips are being asked to do a lot more these days. Today’s advanced communication systems require that the high-speed data transfer between system components be of very high quality. This helps ensure that data centers responsible for storing and processing big data can generate reliable insights for real-world applications, whether these are over-the-air updates for automotive, natural language processing on the edge for voice-controlled virtual assistants, weather monitoring, or pandemic tracking.
What’s the key to ensuring high data transfer quality? Signal integrity (SI) and power integrity (PI). In this blog post, I’ll take a closer look at the needs of high-speed designs, the role of SI and PI, and three key requirements for an effective SI and PI solution.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Verification of Integrity and Data Encryption (IDE) for CXL Devices
- Partial Header Encryption in Integrity and Data Encryption for PCIe
- Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges
- VIP Portfolio Expands for Data-Intensive Hyperscale Data Centers, HPC, and AI/ML
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview