Addressing Signal and Power Integrity for High-Speed Data Center Applications
With increasingly larger volumes of data and incessant demands for faster results, chips are being asked to do a lot more these days. Today’s advanced communication systems require that the high-speed data transfer between system components be of very high quality. This helps ensure that data centers responsible for storing and processing big data can generate reliable insights for real-world applications, whether these are over-the-air updates for automotive, natural language processing on the edge for voice-controlled virtual assistants, weather monitoring, or pandemic tracking.
What’s the key to ensuring high data transfer quality? Signal integrity (SI) and power integrity (PI). In this blog post, I’ll take a closer look at the needs of high-speed designs, the role of SI and PI, and three key requirements for an effective SI and PI solution.
To read the full article, click here
Related Semiconductor IP
- UCIe Chiplet PHY & Controller
- MIPI D-PHY1.2 CSI/DSI TX and RX
- Low-Power ISP
- eMMC/SD/SDIO Combo IP
- DP/eDP
Related Blogs
- Verification of Integrity and Data Encryption (IDE) for CXL Devices
- Partial Header Encryption in Integrity and Data Encryption for PCIe
- Randomization considerations for PCIe Integrity and Data Encryption Verification Challenges
- VIP Portfolio Expands for Data-Intensive Hyperscale Data Centers, HPC, and AI/ML
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms