A Striped Bus Architecture for Minimizing Multi-Core Interference
Understanding the intricacies of software timing behaviour is crucial, especially in safety-critical systems and systems with real-time requirements. While analysing timing on single-core processor architecture might seem straightforward, the landscape becomes notably more complex when dealing with multiple cores. Here, contention for shared resources such as caches, buses, and peripherals add layers of uncertainty to the timing analysis. In this blog post we describe the on-chip bus architecture of the GR765 octa-core LEON/RISC-V microprocessor. This infrastructure is designed to improve the system performance, minimize multi-core interference, and simplify the worst-case execution time analysis.
Interference Challenges
The architecture of many modern multi-core microprocessors imposes some key challenges:
- Bandwidth: Cores competing for simultaneous access to shared resources may result in bottlenecks, leading to delays or inefficiencies in resource utilization.
- Quality of Service (QoS) Management: Ensuring fair and predictable access to the bus for diverse software instances with varying criticality proves challenging.
These constraints are particularly critical in scenarios where exceeding execution time thresholds could trigger failures. Consequently, software developers must carefully consider these limitations to ensure that their applications behave as intended. Moreover, accommodating these constraints often entails longer development cycles and substantial performance trade-offs.
To read the full article, click here
Related Semiconductor IP
- ISO/IEC 7816 Verification IP
- 50MHz to 800MHz Integer-N RC Phase-Locked Loop on SMIC 55nm LL
- Simulation VIP for AMBA CHI-C2C
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
Related Blogs
- Why AI Requires a New Chip Architecture
- A Fast and Seamless Way to Burst to the Cloud for Peak EDA Workloads
- A Complete No-Brainer: ReRAM for Neuromorphic Computing
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA
Latest Blogs
- A Comparison on Different AMBA 5 CHI Verification IPs
- Cadence Recognized as TSMC OIP Partner of the Year at 2025 OIP Ecosystem Forum
- Accelerating Development Cycles and Scalable, High-Performance On-Device AI with New Arm Lumex CSS Platform
- Desktop-Quality Ray-Traced Gaming and Intelligent AI Performance on Mobile with New Arm Mali G1-Ultra GPU
- Powering Scale Up and Scale Out with 224G SerDes for UALink and Ultra Ethernet