A Striped Bus Architecture for Minimizing Multi-Core Interference
Understanding the intricacies of software timing behaviour is crucial, especially in safety-critical systems and systems with real-time requirements. While analysing timing on single-core processor architecture might seem straightforward, the landscape becomes notably more complex when dealing with multiple cores. Here, contention for shared resources such as caches, buses, and peripherals add layers of uncertainty to the timing analysis. In this blog post we describe the on-chip bus architecture of the GR765 octa-core LEON/RISC-V microprocessor. This infrastructure is designed to improve the system performance, minimize multi-core interference, and simplify the worst-case execution time analysis.
Interference Challenges
The architecture of many modern multi-core microprocessors imposes some key challenges:
- Bandwidth: Cores competing for simultaneous access to shared resources may result in bottlenecks, leading to delays or inefficiencies in resource utilization.
- Quality of Service (QoS) Management: Ensuring fair and predictable access to the bus for diverse software instances with varying criticality proves challenging.
These constraints are particularly critical in scenarios where exceeding execution time thresholds could trigger failures. Consequently, software developers must carefully consider these limitations to ensure that their applications behave as intended. Moreover, accommodating these constraints often entails longer development cycles and substantial performance trade-offs.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Processor architecture optimization is not a barrier for university researchers
- Why AI Requires a New Chip Architecture
- Three Smart Steps to Quickly Test a Register Map for Your Entire SoC
- The Importance of Memory Architecture for AI SoCs
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power