Time Sensitive Networking (TSN) Ethernet IP

Time Sensitive Networking (TSN) Ethernet IP is a pre-designed, standards-compliant intellectual property block that enables deterministic, low-latency, and highly reliable Ethernet communication in integrated circuits. TSN Ethernet IP is used in systems where predictable data delivery and precise timing are mandatory, such as automotive networks, industrial automation, robotics, aerospace, telecommunications, and real-time edge computing. Unlike conventional Ethernet, which is best-effort by nature, TSN extends Ethernet to support real-time traffic alongside standard data flows on the same physical network.

TSN Ethernet IP is based on a set of IEEE 802.1 standards that introduce time awareness, traffic scheduling, and synchronization into the Ethernet protocol stack. These standards allow multiple devices to share a common notion of time and to coordinate packet transmission with sub-microsecond accuracy. By integrating TSN capabilities directly into silicon, TSN Ethernet IP enables deterministic behavior without requiring proprietary networking solutions or separate real-time buses.

A typical TSN Ethernet IP core integrates several tightly coupled functional blocks. At its foundation is a high-precision time synchronization mechanism, commonly based on IEEE 802.1AS, which aligns local clocks across all network nodes using generalized Precision Time Protocol (gPTP). This shared time base enables coordinated transmission scheduling and bounded latency. The IP also includes traffic classification and shaping logic that distinguishes time-critical streams from best-effort traffic.

Traffic scheduling is a core feature of TSN Ethernet IP. Mechanisms such as time-aware shaping allow the IP to open and close transmission gates according to a global schedule, ensuring that high-priority traffic is transmitted at precisely defined time windows. Frame preemption logic allows large, low-priority Ethernet frames to be interrupted so that time-critical packets can be transmitted without delay. Additional traffic shaping and policing mechanisms regulate bandwidth usage and prevent congestion from affecting deterministic flows.

TSN Ethernet IP also incorporates reliability features designed for mission-critical communication. Frame replication and elimination mechanisms enable redundant transmission paths, allowing packets to be sent simultaneously over multiple links and recombined at the receiver to tolerate link failures. Per-stream filtering and policing functions protect the network from faulty or misbehaving devices by enforcing strict traffic contracts for each data stream.

Related Articles

Related Products

See all 55 related products in the Catalog

Related Blogs

Related News

×
Semiconductor IP