Time Sensitive Networking (TSN) Ethernet IP
Time Sensitive Networking (TSN) Ethernet IP is a pre-designed, standards-compliant intellectual property block that enables deterministic, low-latency, and highly reliable Ethernet communication in integrated circuits. TSN Ethernet IP is used in systems where predictable data delivery and precise timing are mandatory, such as automotive networks, industrial automation, robotics, aerospace, telecommunications, and real-time edge computing. Unlike conventional Ethernet, which is best-effort by nature, TSN extends Ethernet to support real-time traffic alongside standard data flows on the same physical network.
TSN Ethernet IP is based on a set of IEEE 802.1 standards that introduce time awareness, traffic scheduling, and synchronization into the Ethernet protocol stack. These standards allow multiple devices to share a common notion of time and to coordinate packet transmission with sub-microsecond accuracy. By integrating TSN capabilities directly into silicon, TSN Ethernet IP enables deterministic behavior without requiring proprietary networking solutions or separate real-time buses.
A typical TSN Ethernet IP core integrates several tightly coupled functional blocks. At its foundation is a high-precision time synchronization mechanism, commonly based on IEEE 802.1AS, which aligns local clocks across all network nodes using generalized Precision Time Protocol (gPTP). This shared time base enables coordinated transmission scheduling and bounded latency. The IP also includes traffic classification and shaping logic that distinguishes time-critical streams from best-effort traffic.
Traffic scheduling is a core feature of TSN Ethernet IP. Mechanisms such as time-aware shaping allow the IP to open and close transmission gates according to a global schedule, ensuring that high-priority traffic is transmitted at precisely defined time windows. Frame preemption logic allows large, low-priority Ethernet frames to be interrupted so that time-critical packets can be transmitted without delay. Additional traffic shaping and policing mechanisms regulate bandwidth usage and prevent congestion from affecting deterministic flows.
TSN Ethernet IP also incorporates reliability features designed for mission-critical communication. Frame replication and elimination mechanisms enable redundant transmission paths, allowing packets to be sent simultaneously over multiple links and recombined at the receiver to tolerate link failures. Per-stream filtering and policing functions protect the network from faulty or misbehaving devices by enforcing strict traffic contracts for each data stream.
Related Articles
- Seize the Ethernet TSN Opportunity
- Delivering timing accuracy in 5G networks
- Fronthaul Evolution Toward 5G: Standards and Proof of Concepts
- A Look at New Open Standards to Improve Reliability and Redundancy of Automotive Ethernet
- How to cost-efficiently add Ethernet switching to industrial devices
Related Products
- Ethernet TSN MAC 40G/100G
- 10M/100M/1G/10G/25G Advanced Ethernet TSN Switch IP
- Simulation VIP for Ethernet TSN
- Ethernet TSN Verification IP
- 10M/100M/1G/2.5G Ethernet TSN End Station Controller IP
See all 55 related products in the Catalog
Related Blogs
- Ethernet TSN switch IP core evaluated by conformance testing provided by Spirent Communications
- TSN Ethernet Controller Cores Gain Frame Preemption and Linux Driver
- Fraunhofer/CAST CAN XL IP Core Succeeds in First Multi-Vendor Plugfest
- How Time Sensitive Networking powers the Software Defined Vehicle
- Ethernet Time-Sensitive Network (TSN): Synopsys Verification Solution for Complex TSN Specifications
Related News
- BAE Systems Licenses Time Sensitive Networking (TSN) Ethernet IP Cores from CAST
- Comcores Launches OmniGate: A Versatile and Compact Hardware Evaluation Platform for TSN Ethernet End Stations, Switches, and Gateways
- Comcores Announces Availability of its Ultra-Compact Ethernet TSN End Station Controller IP for Automotive Networks
- Arteris IP FlexNoC Interconnect and Resilience Package Licensed by MegaChips for Automotive Ethernet TSN Switch Chip
- CAST Introduces Ultra-Low Latency TSN Ethernet Switch IP Core
The Pulse
- 最佳合作!Andes晶心科技×经纬恒润共筑RISC‑V软件生态
- 英伟达与新思科技宣布战略合作,携手重塑工程设计未来
- Quintauris 与 SiFive 宣布合作伙伴关系,共同推进 RISC-V 生态体系发展
- SiFive车规级RISC-V IP获IAR最新版嵌入式开发工具全面支持,加速汽车电子创新
- Andes晶心科技发布 D23-SE:支持 DCLS 与 Split-Lock 的 RISC-V 处理器,满足 ASIL-B/D 汽车功能安全应用需求
- d-Matrix 与Andes晶心科技携手打造全球性能最高、效率最佳的规模化 AI 推理加速器
- Perceptia 正式发布基于 GlobalFoundries 22FDX 的 10-bit 极低温 (Cryogenic)数/模(DAC)、模/数(ADC)转换器 IP
- 聯華電子與Polar攜手合作強化美國半導體在地製造能力
- 黑芝麻智能科技采用Arteris技术,助力新一代智驾芯片
- 智芯赋能,共筑生态——SmartDV亮相ICCAD-Expo 2025,助力中国集成电路产业高质量升级
- 芯原NPU IP VIP9000NanoOi-FS获ISO 26262 ASIL B认证
- Perceptia 正式启动将 pPLL03 移植至三星 14 纳米工艺
- VSORA与 创意电子 合作推出 Jotunn8 数据中心 AI 推理处理器
- M31亮相ICCAD 2025 以高效能與低功耗IP驅動AI晶片新世代
- 新思科技于英伟达GTC大会上重点展示Agentic AI、加速计算和AI物理技术