Video and image processing design using FPGAs
January 12, 2007 -- videsignline.com
FPGAs eliminate the up-front non-recurring engineering costs and minimum order quantities associated with ASICs, and the costly risks of multiple silicon iterations through the capability to be reprogrammed as needed during the design process.
Innovations such as HDTV and digital cinema revolve around video and image processing and the rapid evolution of video technology. Major advances in image capture and display resolutions, advanced compression techniques, and video intelligence are the driving forces behind these technological innovations. At the same time, rapid change in standards and higher resolutions are pushing designers away from off-the-shelf technology.
Resolutions in particular have increased dramatically in just the last few years. The following table illustrates current state-of-the-art resolutions in different end types of applications.
Table 1: Resolutions by Application Types
The move from standard definition (SD) to high definition (HD) represents a 6X increase in data needing to be processed. Video surveillance is also moving from the Common Intermediate Format (CIF) (352 x 288) to the D1 format (704 x 576) as a standard requirement, with some industrial cameras even moving to HD at 1280 x 720. Military surveillance, medical imaging, and machine vision applications are also moving to very high resolution images.
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Using vector processing for HD video scaling, de-interlacing, and image customization
- Video and image processing design using FPGAs
- Implementing digital processing for automotive radar using SoC FPGAs
- Designing low-power video image stabilization IP for FPGAs
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models