Video and image processing design using FPGAs
FPGAs are an ideal fit for video and image processing applications where there is a need to have a scalable solution for improving cost, performance, and flexibility while meeting time-to-market goals.
By Brian J. Jent, Altera Corp.
Courtesy of Video/Imaging DesignLine (07/07/2006 0:40 AM EDT)
New trends in video and image processing are forcing developers to re-examine the design architectures they have used previously when considering the numerous tradeoffs of using different architectures that are key to the decision process.
Consumer demand and exciting innovations, such as HDTV and digital cinema, revolve around video and image processing and the rapid evolution of the technology. Major advancements in image capture and display resolutions, advanced compression techniques, and video intelligence are the driving forces behind these technological innovations. At the same time, rapid change in standards and higher resolutions are pushing designers away from off-the-shelf technology.
Resolutions in particular have increased dramatically in just the last few years. The following table illustrates current state-of-the-art resolutions in different end types of applications.
By Brian J. Jent, Altera Corp.
Courtesy of Video/Imaging DesignLine (07/07/2006 0:40 AM EDT)
New trends in video and image processing are forcing developers to re-examine the design architectures they have used previously when considering the numerous tradeoffs of using different architectures that are key to the decision process.
Consumer demand and exciting innovations, such as HDTV and digital cinema, revolve around video and image processing and the rapid evolution of the technology. Major advancements in image capture and display resolutions, advanced compression techniques, and video intelligence are the driving forces behind these technological innovations. At the same time, rapid change in standards and higher resolutions are pushing designers away from off-the-shelf technology.
Resolutions in particular have increased dramatically in just the last few years. The following table illustrates current state-of-the-art resolutions in different end types of applications.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- Video and image processing design using FPGAs
- Using vector processing for HD video scaling, de-interlacing, and image customization
- Implementing digital processing for automotive radar using SoC FPGAs
- Designing low-power video image stabilization IP for FPGAs
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension