Using verification coverage with formal analysis
Vinaya Singh, Joseph Hupcey III, Cadence Design Systems Inc.
EEtimes (4/13/2011 9:13 AM EDT)
Introduction
Verification engineers are increasingly using coverage metrics such as code coverage and functional coverage to guide the verification process to completion. These metrics, however, were developed specifically for simulation. Many contemporary verification flows also include formal analysis tools that provide exhaustive block-level proofs based on properties or assertions. The level of coverage provided by these tools needs to be evaluated, too – but it’s necessary to understand how formal “coverage” differs from simulation coverage, and how formal coverage results can reinforce, or in some cases even replace, coverage created by simulation engines.
In metric-driven verification flows, an executable verification plan tracks simulation coverage metrics on an ongoing basis, using the metrics to evaluate the completion of the verification process. As a result, engineers can quickly see whether a block is completely verified, or if further tests are needed. Steps of the process include developing the verification plan, constructing tests, executing tests, and measuring and analyzing coverage metrics.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- SoC Test and Verification -> Coverage analysis essential in ATE
- Getting the most out of formal analysis
- Pragmatic Adoption of Formal Analysis
- A Comparison of Assertion Based Formal Verification with Coverage driven Constrained Random Simulation, Experience on a Legacy IP
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions