Using verification coverage with formal analysis
Vinaya Singh, Joseph Hupcey III, Cadence Design Systems Inc.
EEtimes (4/13/2011 9:13 AM EDT)
Introduction
Verification engineers are increasingly using coverage metrics such as code coverage and functional coverage to guide the verification process to completion. These metrics, however, were developed specifically for simulation. Many contemporary verification flows also include formal analysis tools that provide exhaustive block-level proofs based on properties or assertions. The level of coverage provided by these tools needs to be evaluated, too – but it’s necessary to understand how formal “coverage” differs from simulation coverage, and how formal coverage results can reinforce, or in some cases even replace, coverage created by simulation engines.
In metric-driven verification flows, an executable verification plan tracks simulation coverage metrics on an ongoing basis, using the metrics to evaluate the completion of the verification process. As a result, engineers can quickly see whether a block is completely verified, or if further tests are needed. Steps of the process include developing the verification plan, constructing tests, executing tests, and measuring and analyzing coverage metrics.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- SoC Test and Verification -> Coverage analysis essential in ATE
- Getting the most out of formal analysis
- Pragmatic Adoption of Formal Analysis
- A Comparison of Assertion Based Formal Verification with Coverage driven Constrained Random Simulation, Experience on a Legacy IP
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models