Pragmatic Adoption of Formal Analysis
Anders Nordstrom, Cadence Design Systems, Inc.
(03/29/2007 9:10 AM EDT), EE Times
(03/29/2007 9:10 AM EDT), EE Times
Introduction
Verification of today's system-on-chip (SoC) designs is a hard problem that keeps getting harder. Design size and complexity continually increase, while the market demands ever-tighter development schedules. Multiple approaches such as directed and coverage-driven random simulations, assertion-based verification, and formal analysis are needed to most effectively verify a chip. This article focuses specifically on the technique of formal analysis and discusses how to adopt it efficiently on SoC projects.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Getting the most out of formal analysis
- Formal Verification IPs: the corner stone for a broader adoption of Formal Verification
- Case Study: Can you afford to ignore formal analysis?
- Using verification coverage with formal analysis
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models