Pragmatic Adoption of Formal Analysis
Anders Nordstrom, Cadence Design Systems, Inc.
(03/29/2007 9:10 AM EDT), EE Times
(03/29/2007 9:10 AM EDT), EE Times
Introduction
Verification of today's system-on-chip (SoC) designs is a hard problem that keeps getting harder. Design size and complexity continually increase, while the market demands ever-tighter development schedules. Multiple approaches such as directed and coverage-driven random simulations, assertion-based verification, and formal analysis are needed to most effectively verify a chip. This article focuses specifically on the technique of formal analysis and discusses how to adopt it efficiently on SoC projects.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Getting the most out of formal analysis
- Formal Verification IPs: the corner stone for a broader adoption of Formal Verification
- Case Study: Can you afford to ignore formal analysis?
- Using verification coverage with formal analysis
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems