Transitioning from C/C++ to SystemC in high-level design
By John Sanguinetti, CTO, Forte Design Systems
Embedded.com (06/01/10, 12:20:00 AM EDT)
In high-level design, high-level code is put through a series of steps on its way to becoming register transfer level (RTL) code. The first step, algorithm design, is usually done in C or C++, where the high-level code that describes how the system will function is created. To be implemented in hardware, this high-level code must be converted to RTL code, using a synthesis tool. It's almost never the case, however, that high-level synthesis using the result of the algorithm design phase will produce a desirable RTL implementation. An architecture design phase that precedes high-level synthesis is required in order to produce RTL code with the desired characteristics.
Making a translation to SystemC for this step has become the preferred high-level design method. In this article, I'll give some examples of steps taken in the architecture design phase that can help you achieve good RTL code.
High-level design has many advantages over the more commonplace design flow that begins with RTL code. Among the most compelling advantages is the improved verification efficiency that a higher level of abstraction offers. It's apparent to the point of being self-evident that when the source code of a design is created, fewer errors occur if the source is at a higher abstraction level than if it is at a lower level. However, a process is still required to verify the transformations that are applied to the design description as it proceeds through the design flow from creation to final realization.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Accelerating High-Level SysML and SystemC SoC Designs
- Reconfiguring Design -> SystemC fills HDL/ C++ gap
- Tools For Reprogrammability -> High-level languages simplify design
- High-level modeling speeds scalable router chip
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models