Structural netlist efficiently verifies analog IP
Naveen Srivastava , Rohit Ranjan & Amit Bathla (Freescale)
EDN (June 04, 2015)
One of the major issues faced in the verification of analog or AMS IP in the SOC environment is the behavioral model’s limitations. Since behavioral models are not perfectly able to replicate analog behavior in a verification environment, many critical bugs are left uncovered.
We will be focusing on this problem, and will discuss how to achieve more accurate analog behavior by using a structural netlist instead of a behavioral model to reduce the number of silicon defects and the verification cycle time.
SPICE model netlist conversion to structural netlist
This approach talks about using methodologies which directly convert transistor level SPICE model into Structural netlist. The principle of these methodologies is to work by isolating Analog circuits from logic and automatically recognizing the latch and flip-flop structures. The design is partitioned into cells, and an automatic algorithm on pattern based function extraction is run. The output is a structural netlist which is used in place of behavioral model for verification purpose. The structural netlist so obtained is pretty much close to actual analog SPICE model.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Scalable Architectures for Analog IP on Advanced Process Nodes
- Analog IP verification guidelines
- The common silicon issues in analog IP integration
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models