Shifting Mindsets: Static Verification Transforms SoC Design at RT Level
Pranav Ashar, CTO, Real Intent Inc.
EETimes (3/6/2015 08:29 AM EST)
Teams 'shift left' to tackle challenges earlier in the design flow, says CTO of Real Intent, an EDA software design tools company.
We are at the dawn of a new age of digital verification for SoCs. A fundamental change is underway. We are moving away from a tool and technology approach — “I have a hammer, where are some nails?” — and toward a verification-objective mindset for design sign-off, such as “Does my design achieve reset in two cycles?”
Objective-driven verification at the RT level now is being accomplished using static-verification technologies. Static verification comprises deep semantic analysis (DSA) and formal methods. DSA is about understanding the purpose and intent of logic, flip-flops, state machines, etc. in a design, in the context of the verification objective being addressed. When this understanding is at the core of an EDA tool set, a major part of the sign-off process happens before the use or need of formal analysis.
To read the full article, click here
Related Semiconductor IP
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
- Neuromorphic Processor IP
Related White Papers
- BIST Verification at SoC level
- Creating IP level test cases which can be reused at SoC level
- Agile Verification for SoC Design
- A Survey on SoC Security Verification Methods at the Pre-silicon Stage
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS