Semiconductor Reliability and Quality Assurance--Failure Mode, Mechanism and Analysis (FMMEA)
Abhishek Gupta & Ashish Kumar
EDN (April 20, 2014)
Failure Mode, Mechanism and Effect Analysis (FMMEA) is a reliability analysis method which is used to study possible failure modes, failure mechanisms of each component, and to identify the effects of various failure modes on the components and functions. This article introduces how to implement FMMEA in detail, including system definition, identification of potential failure modes, analysis of failure cause, failure mechanism, and failure effect analysis. Finite element analysis is carried out, including thermal stress analysis and vibration stress analysis on a semiconductor device. Temperature distribution and vibration modes are obtained, which are the inputs of physics of failure models.
Using a variety of Physics of Failure models, the quantitative calculation of single point failure for the Semiconductor Device are carried out. Results showed that the time to failure (TTF) of random access memory chip which is SOP (small outline package) is the shortest and the failure is due to solder joint fatigue failure caused by the temperature cycle. It is the weak point of the entire circuit board. Thus solder joint thermal fatigue failure is the main failure mechanism of the semiconductor device.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Design-Stage Analysis, Verification, and Optimization for Every Designer
- Optimizing Automated Test Equipment for Quality and Complexity
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems