Securing IoT Devices With ARM TrustZone
Warren Kurisu, Mentor Graphics Embedded Systems Division
EETimes (8/15/2014 05:38 PM EDT)
As we observe the world in which we live, and in particular the electronic devices that surround us, we cannot help but be amazed at how quickly technology has evolved and how this pace of evolution continues to accelerate. The functionality of connected devices is rapidly increasing, and, accordingly, the value of the information stored on these devices, or information accessible through these devices is also rapidly rising. Because these value-rich devices are often connected to a network, cybercrime and cyber security concerns are also today’s front page news.
In this discussion I will address securing devices for connected and Internet of Things (IoT) systems. We’ll also look at how virtualization can be leveraged to enable consolidation and reliability of connected devices and at how ARM TrustZone can be utilized to address categories of security threats. Throughout the supply chain spanning semiconductor vendors, software developers, and system integrators, there are three interrelated topics that are consistently discussed: (1) IoT connectivity, (2) a move to ARM-based System on Chip (SoC) architectures, and (3) security.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- Introducing ARM Cortex-M23 and Cortex-M33 Processors with TrustZone for ARMv8-M
- Securing UART communication interface in embedded IoT devices
- ARM Security Solutions and Intel Authenticated Flash -- How to integrate Intel Authenticated Flash with ARM TrustZone for maximum system protection
- Efficient C code for ARM devices
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension