Safety & security architecture for automotive ICs
Yash Saini & Arun Jain (Freescale Semiconductors)
EDN (September 25, 2013)
The automotive industry is changing rapidly to address the stringent requirements for safety and security of vehicular systems. Requirements are not only coming from customers, but regulatory authorities are also pressuring for greater safety and security in vehicles. The requirements include high bandwidth networks, improved data security, enhanced functional safety, and reduced energy consumption.
The ISO 26262 standard defines functional safety for automotive equipment applicable throughout the lifecycle of all automotive electronic and electrical safety-related systems. The standard is an adaptation of the Functional Safety standard IEC 61508 for Automotive Electric/Electronic Systems.
Automotive systems need to be protected against any real-time defects to make it safe for use. Real-time defects can include internal and external errors (e.g., the vehicular communication network).
Automotive data security ranges from vehicle theft protection to enabling secure communication with external devices such as smart phones, MP3 players, or navigation devices. Security also means protection against hackers. After gaining access, a hacker could control everything from the entertainment system to braking.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- PCIe IP With Enhanced Security For The Automotive Market
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models