Power management in embedded software
Colin Walls, Mentor Graphics
embedded.com (August 21, 2015)
Power consumption by embedded devices is a critical issue. There is always a need to extend battery life and/or reduce the environmental impact of a system. Historically, this was purely a hardware issue, but those days are past. In modern embedded systems software takes an increasing responsibility for power management. This article reviews how power management is achieved while a device is operating and looks at the techniques employed to minimize power consumption when a device is inactive.
There are broadly two contexts in which a device's power consumption may be considered: when it is in use and when it is idle. In the former, active power management is the key requirement; in the latter, the deployment of low power CPU modes may be advantageous.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Design considerations for power sensitive embedded devices
- Analog and Power Management Trends in ASIC and SoC Designs
- How NoCs ace power management and functional safety in SoCs
- The pivotal role power management IP plays in chip design
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design