Power management in embedded software
Colin Walls, Mentor Graphics
embedded.com (August 21, 2015)
Power consumption by embedded devices is a critical issue. There is always a need to extend battery life and/or reduce the environmental impact of a system. Historically, this was purely a hardware issue, but those days are past. In modern embedded systems software takes an increasing responsibility for power management. This article reviews how power management is achieved while a device is operating and looks at the techniques employed to minimize power consumption when a device is inactive.
There are broadly two contexts in which a device's power consumption may be considered: when it is in use and when it is idle. In the former, active power management is the key requirement; in the latter, the deployment of low power CPU modes may be advantageous.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Design considerations for power sensitive embedded devices
- Analog and Power Management Trends in ASIC and SoC Designs
- How NoCs ace power management and functional safety in SoCs
- The pivotal role power management IP plays in chip design
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design