Power management in embedded software
Colin Walls, Mentor Graphics
embedded.com (August 21, 2015)
Power consumption by embedded devices is a critical issue. There is always a need to extend battery life and/or reduce the environmental impact of a system. Historically, this was purely a hardware issue, but those days are past. In modern embedded systems software takes an increasing responsibility for power management. This article reviews how power management is achieved while a device is operating and looks at the techniques employed to minimize power consumption when a device is inactive.
There are broadly two contexts in which a device's power consumption may be considered: when it is in use and when it is idle. In the former, active power management is the key requirement; in the latter, the deployment of low power CPU modes may be advantageous.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Articles
- Design considerations for power sensitive embedded devices
- Analog and Power Management Trends in ASIC and SoC Designs
- How NoCs ace power management and functional safety in SoCs
- The pivotal role power management IP plays in chip design
Latest Articles
- FPGA-Accelerated RISC-V ISA Extensions for Efficient Neural Network Inference on Edge Devices
- MultiVic: A Time-Predictable RISC-V Multi-Core Processor Optimized for Neural Network Inference
- AnaFlow: Agentic LLM-based Workflow for Reasoning-Driven Explainable and Sample-Efficient Analog Circuit Sizing
- FeNN-DMA: A RISC-V SoC for SNN acceleration
- Multimodal Chip Physical Design Engineer Assistant