Open-source hardware for embedded security
Geoffrey Ottoy, Bart Preneel, Jean-Pierre Goemaere, Nobby Stevens, and Lieven De Strycker
EDN (February 4, 2013)
Imagine you’re waiting in line, queuing to enter a major event. The ticket you have bought online is stored on your smart phone. As you swipe your phone over some designated area, an NFC connection is set up, your ticket is validated and the gates open to let you in. And the good thing is, that it all happened anonymously.
In this kind of applications, your anonymity can be guaranteed by the use of recently developed anonymous credentials protocols like Idemix (IBM) or U-Prove (Microsoft). These protocols rely on Zero-Knowledge Proofs-of-Knowledge (ZKPK); you prove that you have knowledge of a certain attribute without revealing its value. The attribute is bound to a public key in a so-called commitment.
To read the full article, click here
Related Semiconductor IP
- EMFI Detector
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
Related White Papers
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Hardware Security Requirements for Embedded Encryption Key Storage
- Deciphering phone and embedded security - Part 4: Ideal platform for next-generation embedded devices
Latest White Papers
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions