Moving to SystemC TLM for design and verification of digital hardware
Stuart Swan, Qiang Zhu, Xingri Li, Cadence Design Systems, Inc.
EETimes (5/13/2013 9:35 AM EDT)
Design and verification of new digital hardware blocks is becoming increasingly challenging. Today, designers are confronted with a host of issues, including growing design and verification complexity, time-to-market pressures, power goals, and evolving design specifications.
To tackle these challenges, customers are beginning to make a significant change in design methodology, by moving to SystemC transaction-level models (TLM) as the design entry point, and by leveraging high-level synthesis (HLS) in combination with IP reuse. This article presents our experience in working with Fujitsu Semiconductor Ltd. to adopt this new methodology using Cadence® C-to-Silicon Compiler on a data access controller design, and presents the very promising results they reported at a recent C-to-Silicon user group meeting in Japan. The selection of the design, modeling work, and results analysis described in this paper were performed by Fujitsu Semiconductor with some assistance from Cadence.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- Automotive Design Needs Efficient Verification to Survive
- Importance of VLSI Design Verification and its Methodologies
- Design-Stage Analysis, Verification, and Optimization for Every Designer
- Shift Left for More Efficient Block Design and Chip Integration
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY