How flash-based FPGAs simplify functional safety requirements
Ted Marena, Microsemi
embedded.com (June 19, 2018)
As the quantity of industrial equipment controlled by electronics grows, so do concerns over the equipment failing and causing personal harm and property damage. Safety functions are built into equipment to prevent functional failure and ensure that if a system does fail, it fails in a nonharmful way. Examples of safety systems in industrial equipment include train breaks, sensors monitoring hazards to air quality or the physical environment, assembly line assistance robots, and distributed control in process automation equipment, just to name a few. These systems often include field programmable gate arrays (FPGAs) that, when supported by safety data packages for calculating failure rates, can play a pivotal role in streamlining safety assessments. When these devices are also flash-based and therefore immune to single event upsets (SEUs), FPGAs enable safety system developers to dramatically simplify their designs.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- FPGAs & Functional Safety in Industrial Applications
- How NoCs ace power management and functional safety in SoCs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- How to use FPGAs to develop an intelligent solar tracking system
Latest Articles
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design
- Secure Multi-Path Routing with All-or-Nothing Transform for Network-on-Chip Architectures