How flash-based FPGAs simplify functional safety requirements
Ted Marena, Microsemi
embedded.com (June 19, 2018)
As the quantity of industrial equipment controlled by electronics grows, so do concerns over the equipment failing and causing personal harm and property damage. Safety functions are built into equipment to prevent functional failure and ensure that if a system does fail, it fails in a nonharmful way. Examples of safety systems in industrial equipment include train breaks, sensors monitoring hazards to air quality or the physical environment, assembly line assistance robots, and distributed control in process automation equipment, just to name a few. These systems often include field programmable gate arrays (FPGAs) that, when supported by safety data packages for calculating failure rates, can play a pivotal role in streamlining safety assessments. When these devices are also flash-based and therefore immune to single event upsets (SEUs), FPGAs enable safety system developers to dramatically simplify their designs.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- FPGAs & Functional Safety in Industrial Applications
- How NoCs ace power management and functional safety in SoCs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- How to use FPGAs to develop an intelligent solar tracking system
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS